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Abstract: Accurate spatial and temporal precipitation estimates are important for hydrological
studies of irrigation depletion, net irrigation requirement, natural recharge, and hydrological water
balances in defined areas. This analysis supports the verification of water savings (reduced depletion)
from deficit irrigation of pastures in the Upper Colorado River Basin. The study area has diverse
topography with scattered fields and few precipitation gauges that are not representative of the basin.
Gridded precipitation products from TRMM-3B42, PRISM, Daymet, and gauge observations were
evaluated on two case studies located in Colorado and Wyoming during the 2014–2016 irrigation
seasons. First, the resolution at the farm level is discussed. Next, bias occurrence at different time
scales (daily to monthly) is evaluated and addressed. Then, the coverage area of the gauge station,
along with the impact of the dominant wind direction on the shape of the coverage area, is evaluated.
Ultimately, available actual ET maps derived from the METRIC model are used to estimate spatial
effective rainfall. The results show that the spatial resolutions of TRMM and PRISM are not adequate
at the farm level, while Daymet is a better fit but lacks the adequate latency versus TRMM and
PRISM. When compared against local weather station records, all three spatial datasets were found
to have a bias that decreases at coarser temporal intervals. However, the performance of Daymet and
PRISM at the monthly time step is acceptable, and they can be used for water resource management
at the farm level. The adequacy of an existing gauge station for a given farm location depends on
the willingness to accept the risk of the bias associated with a non-persistent, non-symmetric gauge
coverage area that is highly correlated with the dominant wind direction. Among all goodness of
fit statistics considered in the study, the interpretation of the summation of error makes more sense
for quantifying the rainfall bias and risk for the user. Finally, based on the USDA-SCS model and
actual spatial ET, overall, seasonal effective rainfall tends to be less than 60% of total rainfall for
agricultural lands.

Keywords: precipitation; effective rainfall; gauge station; remote sensing; TRMM; PRISM; Daymet;
METRIC model

1. Introduction

The rain gauge is the most basic meteorological instrument for measuring the amount of
precipitation at a specific location. Rain gauge records are useful for meteorology, hydrology,
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agriculture, and scientific and practical activities. For the latter, rainfall records can be used to evaluate
the impact of the amount of precipitation on the plant water needs and its absence in drought
conditions. Moreover, rain gauge records are an essential input for effective rainfall estimation models.
Numerous studies conducted by many researchers have benefited from rain gauge datasets and
their applications. Most of these studies can be classified into three categories: (1) the generation of
new rainfall or precipitation datasets, (2) validation or comparison between rain gauge and other
sources, and (3) evaluation of spatial and temporal correlation to find trends between rainfall and other
hydrological and non-hydrological parameters. In the first category, Huffman et al. (1994) [1] presented
a new model called the Satellite-Gauge-Model (SGM) to estimate monthly global precipitation with
2.5° resolution using microwave and infrared satellite data, rain gauge information, and numerical
predictions models. Afterward, Xie and Arkin (1995) [2] developed a new algorithm to produce
monthly global gridded precipitation using five sources of information. These sources were rain
gauge-based analysis from the Global Precipitation Climatology Center (GPCC), predictions generated
by the European Center using the operational forecast model, and three sources of information
obtained by satellites. Six years later, Huffman et al. (2000) [3] described a new technique called
One-Degree Daily (1DD) to generate a daily estimation of precipitation with 1° resolution and global
scale using observational records and satellite data. The product of this technique was officially
approved by the Global Precipitation Climatology Project (GPCP). Adler et al. (2000) [4] presented
a technique to modify geosynchronous infrared satellite data using the combination of the Tropical
Rainfall Measuring Mission (TRMM) and a radar-radiometer to generate a new dataset by merging
with rain gauge information. Yatagai et al. (2009) [5] created a daily gridded precipitation database
using several rain gauge station observations (∼8500 valid stations) for 1961–2004. This database,
called APHRO-V0902, was released for Monsoon Asia, Russia, and the Middle East with 0.5° and
0.25° resolution. The new version of this dataset was released in 2012 by Yatagai et al. (2012) [6].
Prat and Nelson (2015) [7] estimated precipitation over the contiguous United States (CONUS) using
satellite, radar, and surface observation (rain gauge) information. Then, they evaluated the new dataset
versus surface observations from the Global Historical Climatology Network-Daily (GHCN-D) and the
Parameter-Elevation Regression on Independent Slopes Model (PRISM) at annual, seasonal, and daily
scales. The results indicated a satisfying agreement between the new dataset and GHCN-D in terms of
annual average rain rates.

In the second category, Austin (1987) [8] conducted research on the impacts of physical factors such
as raindrop size and evaporation on the rainfall measurement from two sources. These two sources
were radar reflectivity and surface rainfall measured by a rain gauge. After evaluating 374 comparisons
in 22 storms, they estimated and presented the influence of each physical factor. Joss and Lee (1995) [9]
evaluated the impacts of topography, radar parameter, and the network rain gauge on the accuracy
of precipitation produced by radar in the Swiss Alps. Sorooshian et al. (2000) [10] evaluated the
precipitation product obtained from the Precipitation Estimation from Remotely-Sensed Information
using Artificial Neural Networks (PERSIANN) model versus the resulting rain-rate estimated climatic
data center radar-gauge composite data over Florida and Texas. In that study, the PERSIANN model,
as an automated system for estimating precipitation using remote sensing data and an Artificial
Neural Network (ANN), enjoyed 77%–90% accuracy in terms of the correlation coefficient (R).
Dinku et al. (2007) [11] presented a comprehensive evaluation of the accuracy of precipitation products
from several satellite sources such as TRMM 3B43 and the Climate Prediction Center Merged Analysis
of Precipitation (CMAP) using a dense station network over the Ethiopian highlands. The results
showed that CMAP and TRMM 3B43 have the minimum bias (∼10%) from the gauge station. Su et al.
(2007) [12] evaluated the precipitation estimated by TRMM 3B42 from 1998–2009 with the available
gauge data in the La Plata basin in South America. The results indicated a strong relationship between
TRMM 3B42 and the gauge data network at a monthly scale. Salio et al. (2014) [13] assessed the
accuracy of high-resolution precipitation estimated by five different sources using a dense rain gauge
network over southern South America. These sources were TRMM 3B42 V6, V7, RT (Real Time),
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NOAA, hydro-estimator, and the combined scheme algorithm. Furthermore, Gao and Liu (2013) [14],
Liu et al. (2014) [15], and Chen et al. (2014) [16] conducted the same research over complex terrain
in southwest China, Beijing, and the Tibetan Plateau, respectively. Recently, Lolli et al. (2018) [17]
developed a new method to estimate vertically-resolved rain parameters such as rainfall intensity
using a synergy between ground-based LiDAR measurements, disdrometer data, and an analytical
solution. The results showed that this method can help validate satellite mission data particularly for
low intensity precipitation (less than 3 mm/h).

Concerning the third group, Buytaert et al. (2006) [18] applied the Thiessen polygon and kriging
method for spatial interpolation of the daily rainfall data using 14 rain gauge stations in the Rio
Paute basin. The results showed a significant correlation between daily rainfall and slope, aspect,
and topography. Moreover, kriging provided better results than Thiessen. Haberlandt (2006) [19] used
four types of kriging methods for the spatial interpolation of hourly rainfall data records obtained
from the Elbe River basin rain gauge in Germany and compared the results of four types of kriging
methods with two traditional techniques: Thiessen polygon and Inverse square Distance Weighting
(IDW). The results showed that Kriging with External Drift (KED) had the best performance among the
kriging-based and traditional methods. Schmidli and Frei (2005) [20] applied two common regression
models, linear regression and logistic regression, to extract the seasonal trend of the heavy precipitation
and drought conditions in Switzerland using 104 rain gauge stations during 1901–2000. The results
showed a clear trend for winter and autumn.

It is evident, based on to the presented literature reviews, that most of the studies were focused
on applications using the rain gauge as a ground based source of information in constructing local or
global precipitation datasets or in evaluating the performance of precipitation products. Moreover,
they showed that rain gauge information can be useful in prediction and climate change models
and in assessing the trends or correlations between precipitation measured at these stations and
other hydrological variables. Clearly, rain gauge information can be used directly as a precipitation
dataset or indirectly as an important component in the aforementioned applications, including the
generation of new spatial datasets, validation and bias correction of precipitation algorithms at different
scales, evaluation of correlation between precipitation and other parameters such as slope, and as
a major input for hydrological models. However, in agriculture, one of the most important and yet
ignored aspects of rain gauge station characterizations, and one that was not addressed in detail
in any of the aforementioned studies, is the assessment of their coverage area, or influencing area,
in the spatial scale. Furthermore, while it is expected that the dominant wind direction would have
a significant impact on the shape of the coverage area, the magnitude of error between rain gauge
records and the precipitation product at different temporal and spatial scales has not been clearly
evaluated in previous studies. The main goals of this study then are to propose an approach to show
the importance of the resolution of precipitation datasets at the farm level, to evaluate the behavior of
bias in precipitation datasets at different time scales (daily to monthly) and at different resolutions
(1 km to 0.25°), to determine the influencing area of rain gauges in terms of rainfall during the growing
season and their relationship with the dominant wind direction, and finally, to generate effective
rainfall maps using the USDA-SCS [21] method and available ET maps.

2. Materials and Methods

2.1. Area of Study

This research considered two study areas or locations. The first consisted of agricultural lands in
a small sub-basin in Central Colorado with only one active hourly station called “Hayden, Yampa Vall”.
The latitude and longitude of the weather station are 40.4833 N and 107.2166 W, respectively, at 2011
m above sea level (asl), and the study area is about 1000 km2. The second area of study is located in
Wyoming and has two active hourly stations called “Budd” and “Boulder Rearing”. The coordinates are
42.5780 N, 110.10972 W at 2117 m asl and 42.7158 N, 109.6897 W at 2130 m asl, respectively. The distance
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between the two stations is 57 km, and the study area is about 2300 km2. The rectangular shape around
these stations that is considered the area of study includes dense pasture, hay, grassland, herbaceous,
and cultivated crop lands. Both Haden station in Colorado and Boulder station in Wyoming are located
in plateau regions, but Budd station in Wyoming is located in a mountain region. The performance of
all three spatial datasets against rain gauges was evaluated for the growing season in 2014, 2015 and
2016. The geographic location layout of these case studies and the location of weather stations with
elevation and 2011 NLCD (land cover classes) [22] are shown in Figure 1.

Figure 1. (First row) World imagery and general information of weather station locations for
1st (left column) and 2nd case study (right column); (a,b): NLCD 2011 [22] agricultural land use;
(c,d): elevation map using NED (The National Elevation Dataset) 1 arc-second dataset from the USGS
National Elevation Dataset program; and (e,f): land use map using NLCD 2011 [22].

As shown in the left column in Figure 1, the first case study located in Colorado has only one active
weather station (Figure 1a) as is also shown on the MesoWest website [23]. Except for the western
edges, the elevation increases from the center to the edges in a north/south direction (narrow valley).
The center area toward the west has a low elevation and is almost flat (Figure 1c). The middle area is
covered by grassland, herbaceous plants, pasture, and hay [22]. Most of the other hill slope locations
are covered by forest (Figure 1e).

The right column of Figure 1 illustrates the geographical location of the second case study located
in the Wyoming basin and its weather stations (Figure 1b), along with maps of peaks and valleys
(Figure 1d). As shown in these figures, the “Boulder Rearing” station is located at a low elevation,
while the “Budd” station is located at a high elevation. As in the Colorado case study, most parts of the
Wyoming study area are covered by shrub, forest, and grassland. The majority of the forest lands are
in the high-elevation terrain, whereas the grassland areas are in the lowlands (Figure 1f). The middle
part of the Wyoming study area has lower elevations and is covered by grassland, pasture, and hay.
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2.2. Precipitation Products

In this study, three data sources were used to show the importance of resolution at the farm level.
These datasets are described below, and a summary of their temporal and geographical resolution
and availability is presented in Table 1. The quality control of the precipitation products, as well
as the weather station records was performed by other competent agencies. The same is true for
the gridded datasets, such as PRISM. According to the PRISM documentation (https://developers.
google.com/earth-engine/datasets/catalog/OREGONSTATE_PRISM_AN81d), the quality control
of the observation network requires a comparatively long period of time. Thus, PRISM datasets are
re-calculated several times until six months have elapsed. Regarding Daymet, the data provider
(Oak Ridge National Laboratory) carried out the cross-validation. TRMM 3B42 is also provided by
NASA along with its relative error (mm/h). Regarding the rain gauge data, we refer the interested
readers to MesoWest [23] operated by the University of Utah and CoAgmet [24] operated by Colorado
State University.

Table 1. A summary of the resolution, coverage, and latency of three precipitation datasets.

Precipitation Products Spatial Resolution Temporal Resolution Latency Spatial Coverage Temporal Coverage

TRMM-3B42 0.25° 3 h Real time
50 S–50 N

180 W–180 E 1998–2018

PRISM 4 km Daily 6 months later United Sates 1981–2018

Daymet 1 km Daily 1 year later
United States, Mexico, Canada,

Hawaii, and Puerto Rico 1980–2017

2.2.1. TRMM-3B42

TRMM-3B42 is an algorithm that produces precipitation data using a combination of
thermal infrared data from geostationary satellite and passive microwave data from four sources:
TRMM microwave imager (TMI), Special Sensor Microwave Imager (SSM/I), Advanced Microwave
Sounding Unit (AMSU), and Advanced Microwave Sounding Radiometer-Earth Observing System
(AMSR-E) (Huffman et al., 2007 [25]). This precipitation estimate was generated in four steps: adjusting
and combining the Passive Microwave (PM) estimations, creating Thermal Infrared (TIR) precipitation
estimations using adjusted and combined PM estimations, evaluating TIR precipitations, and indirectly
adjusting the data using gauge observations. TRMM-3B42 is available after the end of each month at
a resolution of 0.25° (∼25 km).

2.2.2. PRISM

The Precipitation-elevation Regression on Independent Slopes Model (PRISM) is an interpolation
model developed at Oregon State University (Dally et al., 2007 [26], and Dally et al., 2015 [27]).
PRISM provides several distributed variables on a regular grid size with different spatial and temporal
resolutions (1 km and 4 km). These variables are calculated using linear relationships between climatic
variables and elevation values. The factors considered in this weighted regression model are location,
elevation, topographic features, vertical atmospheric layer information, coastal proximity, and terrain
orographic effectiveness. Values assigned to a grid cell are calculated based on a linear regression
of climate station values versus elevation. In this model, a moving-window procedure is employed
to extract a unique regression function for each grid cell. Next, a specific weight is assigned to each
station based on the aforementioned factors, and a climate-elevation gradient is calculated. Ultimately,
an averaged center-cell value is calculated based on its neighboring values and the distance between
the center grid cell and neighboring grid cells. One of the most important variables achieved by PRISM
is precipitation (4 km), which is used as input information for hydrologic modeling and climatic
research. After 6 complete months have passed, the datasets are considered stable, but before that time,
the datasets are not finalized and are called “provisional”.

https://developers.google.com/earth-engine/datasets/catalog/OREGONSTATE_PRISM_AN81d
https://developers.google.com/earth-engine/datasets/catalog/OREGONSTATE_PRISM_AN81d
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2.2.3. Daymet

This set provides gridded daily weather variables for North America. These variables are
minimum and maximum temperature, precipitation, humidity, shortwave radiation, snow water
equivalent, and day length. The temporal resolution of Daymet is a daily time step, and the spatial
resolution is 1 km. The outputs of this model are useful in hydrology, carbon cycle science, climate
change analysis, etc. This dataset is available for 1980 through the latest full calendar year for the
United States, Mexico, Canada, Hawaii, and Puerto Rico (Thornton et al., 2017 [28]). Most of the time,
there is a one-year latency in Daymet data availability.

2.2.4. Weather Station Data Source

Weather station records can be obtained from several sources, such as CoAgmet [24],
MesoWest [23], and Cli-Mate [29]. The precipitation records for Wyoming (Budd and Boulder stations)
were provided by the Wyoming Division of Water Resources, and the records for Colorado were
downloaded from the CoAgmet server [24]. For the aforementioned regions, the required information
to plot wind rose graphs was not available. However, MesoWest ([23]) provides near real-time active
weather station observation records in a Comma-Separated Values (CSV) format. Wind speed and
wind direction were extracted from this source and used in this study. All of the gauge records that
included rain, wind direction, and wind speed are provided at hourly time step by these data sources.

2.3. Methodology

The methodology of this study is presented graphically below. The analysis was performed for
the growing season (April–October) as shown in Figure 2.

Figure 2. Methodology followed in the present study.
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As illustrated in Figure 2, precipitation sources including TRMM-3B42, PRISM, and Daymet
were first downloaded for 2014–2016 (Step 1). TRMM-3B42 provides 3-h time scale precipitation,
whereas PRISM and Daymet are daily datasets. The datasets were clipped for the case studies and
for the growing season (April–October). TRMM-3B42 precipitation values were converted to a daily
scale (Step 2). In the third step, the three daily spatial time series (TRMM-3B42, PRISM, and Daymet)
were constructed for each year (Step 3). Next, the impact of high-resolution spatial precipitation
maps at the farm level (i.e., 30-m resolution) was evaluated by comparing the irrigated unit from
NLCD 2011 [22] versus the three different precipitation products (Step 4). In Steps 5 and 6, the hourly
observed rainfall, wind speed, and wind direction for the gauge station (Figure 1) were obtained and
converted to a daily time step, and the rainfall records were adjusted using Equation (1) provided
by Yang et al. (1998) [30]. After these adjustments, precipitation agreement at different temporal
and spatial scales between all precipitation sources versus rain gauge records was examined using
a Taylor diagram (Taylor, 2011 [31]) and statistical indices (Step 7). Based on the results of Steps 4
and 7, one of the spatial precipitation products was selected, and its bias from observed records was
addressed (Steps 8 and 9). Because both case studies were poor in terms of the number of active
stations, it was assumed that the daily bias of all sources at the gauge location was a constant value for
other surrounding locations. After bias correction, the Summation of Absolute Error (SAE) during the
growing season as a statistical index was calculated between the daily rainfall records of the gauge and
daily precipitation of the chosen precipitation data, and then, the gauge coverage area was generated
(Steps 10 and 11). In Step 12, the “wind rose” graph was drawn using the wind direction and wind speed
recorded at the gauge, and the relationship between the dominant wind direction and the elongation
direction of the influenced area for each station was examined. As a final step, ET maps from the
METRIC model (Step 13) were used in the USDA-SCS approach, along with monthly rainfall calculated
using Equation (3), to estimate effective rainfall maps (Step 14). The code for this methodology can be
found at http://www.hydroshare.org/resource/591bfb4171834eb287fb6c0725d7e3dd.

2.3.1. Yang Correction for Gauge Precipitation Data

Because of Venturi effects and evaporation, precipitation records measured by precipitation gauges
are usually underestimated. To adjust these records, all of the daily rainfall gathered from the weather
stations for both case studies during the growing season (1 April–1 October) of each year were adjusted
by Equation (1), recommended by the World Meteorological Organization (Yang et al. 1998 [30]) based
on the wind values at the weather stations. This step is necessary because the Yang adjustment is
rarely performed for any weather data.

Padj = Pgauge(exp(0.062× u0.58
g )) (1)

in which Padj = the adjusted precipitation (mm); Pgauge = precipitation recorded at the weather station
(mm); and ug = wind speed at the weather station (m/s).

2.3.2. Bias Analysis with Statistical Indices

After adjusting rain gauge records to account for Venturi and evaporation effects, the bias of
each spatial dataset versus the adjusted gauge records was examined. To do that, the time series of
precipitation from the weather station versus the time series of precipitation from the pixel of the spatial
datasets on which the weather station was located was evaluated at three time scales (daily, weekly,
and monthly). For the evaluation, the Taylor diagram ([31]), Nash–Sutcliffe model efficiency coefficient
(NSE, Equation (6)), and Summation of Absolute Error (SAE, Equation (7)), along with scatter plots of
the gauge records versus the aforementioned datasets were used. In the Taylor diagram, three statistics
are related to each other based on Equation (2): Pearson correlation coefficient (ρ), root-mean-squared
error (RMSE), and standard deviation (SD) (Equations (3)–(5)). Therefore, this diagram can show
multiple aspects of model performance in a single diagram.

http://www.hydroshare.org/resource/591bfb4171834eb287fb6c0725d7e3dd
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E = σ2
e + σ2

o − 2σeσoρ (2)

in which E = the centered RMSE between observations and estimations; ρ = Pearson correlation
coefficient; σo and σe = the standard deviation of the observations and estimations, respectively.

ρ =
∑n

t=1(Padj(t) − ¯Padj)(Ps(t) − P̄s)√
∑n

t=1(Padj(t) − ¯Padj)2 ∑n
t=1(Ps(t) − P̄s)2

(3)

RMSE =

√
∑n

t=1(Ps(t) − Padj(t))
2

n
(4)

SD =

√
∑n

t=1(P(t) − ¯P(t))2

n
(5)

in which Padj(t) = the adjusted precipitation in time period t; Ps(t) = the precipitation estimation in
period t; ¯Padj = the average adjusted precipitation in period t; P̄s = the average precipitation estimation
in period t; P(t) = the precipitation in period t; ¯P(t) = the average precipitation in period t; n = the
number of records.

NSE = 1−
∑n

i=1(Ps(t) − Padj(t))
2

∑n
i=1(Ps(t) − P̄adj(t))

2 (6)

SAE = MAE ∗ n =
n

∑
i=1
| Ps(t) − Padj(t) | (7)

It is important to clarify the use of SAE instead of MAE in this study. While MAE provides
an averaged value for the precipitation differences between the gauge station and the corresponding
pixel in the precipitation dataset, SAE presents the same information, but it can be tied to the risk to
the irrigator (in mm/season) using the precipitation information, depending on the distance between
the field and the gauge location.

2.3.3. Bias Correction

After choosing a spatial precipitation product for further analysis in this study, it was necessary to
remove the bias from estimation records based on local observations. Because these case studies were
in poor regions in terms of the number of active gauge stations (1 in Colorado and 2 in Wyoming),
a simple daily spatial bias correction procedure was applied on the selected dataset. For bias correction
in both regions under study, the differences between daily time series of rainfall measured at the
weather stations and daily time series of the selected spatial dataset were calculated and subtracted.
These bias values were considered as a constant correction for each day.

2.3.4. Gauge Coverage Area or Area of Influence

To determine the gauge coverage area, SAE using Equation (7) during the growing season between
the adjusted gauge records (observations) and the bias corrected precipitation of each pixel from the
selected products (estimations) was calculated and shown spatially.

2.3.5. Effective Precipitation Using the USDA-SCS Method

Numerous methods have been presented to estimate effective rainfall. These methods can
be categorized into three groups: direct measurement, modeling water balance, and empirical or
semi-empirical equations [32]. In this study, due to the availability of actual spatial ET estimates,
the approach proposed by the U.S. Department of Agriculture (1970) called the USDA-Soil
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Conservation Service (SCS) was used to determine the effective rainfall. Equations (8) and (9) were
extracted based on the 50 years of rainfall records analyzed at 22 meteorological stations over the
United States.

Pe = SF(1.253P0.824
t − 2.935)(100.001ETC ) (8)

SF = (0.531747 + 0.295164D− 0.057697D2 + 0.003804D3) (9)

in which Pe = average monthly effective precipitation (mm/month); Pt = total precipitation for the
month in mm (mm/month); ETC = crop ET per month (mm/month) [33]; SF = multiplication factors
that depend on net depth of irrigation (D) in inches [34]. The value of the net depth of irrigation can
be estimated from Table 2 [35]. To calculate the spatial effective rainfall, it is necessary to access the
monthly value of actual ET. In this study, the monthly ET maps using METRIC models from the study
prepared by Allen and Torres-Rua, 2018 [36], were used. Furthermore, D = 40 mm (1.57 inches) because
of the loamy soil texture of both case study areas and assuming medium rooting crops as expected
for alfalfa and pasture hay. Therefore, SF is equal to 0.87, and effective rainfall for each pixel can be
calculated using Equation (8).

Table 2. Approximate net irrigation depths in mm obtained from [35].

Soil Type Shallow Rooting Crops Medium Rooting Crops Deep Rooting Crops

Shallow and/or sandy soil 15 30 40

Loamy soil 20 40 60

Clayey soil 30 50 70

3. Results and Discussion

3.1. Spatial Precipitation Resolution Impact

In addition to the delay time for availability (“latency”) discussed in the precipitation products
(Table 1), an important aspect of precipitation datasets is their spatial resolution. The adequacy of
spatial resolution for farm units is shown in Figure 3. This figure presents the cumulative precipitation
layer for 2014 from each dataset, along with the land cover layer from the National Land Cover
Database (NLCD 2011 [22]) for the area around the weather station in Colorado. The NLCD is
a 30-m Landsat-based land cover created by the Multi-Resolution Land Characteristics (MRLC)
Consortium using a decision tree classification method. The resolution of TRMM is 0.25 degrees
(∼25 km), while PRISM is 4 km, and Daymet is 1 km. It is evident that, for irrigation purposes at
the farm unit, the resolution of TRMM and PRISM will not provide useful information. The TRMM
pixel located on the weather station has a high degree of aggregation that becomes non-representative
of terrain elevation or other factors influencing the weather station. Although a higher resolution of
precipitation data is desired, Daymet resolution seems to be enough for the average American farm,
which is 435 acres or 1.7 km2 (USDA, 2012 [37]).
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(a) TRMM-3B42 (b) PRISM (c) Daymet

Figure 3. Example of the spatial resolution of (a) TRMM-3B42, (b) PRISM, and (c) Daymet over
agricultural fields in Hayden, Colorado in 2014.

3.2. Yang Correction

After assessing the importance of high-resolution rainfall datasets at the farm level, it is necessary
to compare the estimation records with the observed records in terms of their accuracy. However,
before making this comparison, the gauge records need to be adjusted because of Venturi effects and
evaporation. The histogram of differences between precipitation gauges before and after adjustment
based on the Yang correction is shown in Figure 4.

(a) Hayden at Colorado (b) Boulder at Wyoming (c) Budd at Wyoming

Figure 4. Histogram of differences between precipitation recorded at each gauge for all three seasons
(2014–2016), before and after correction using Equation (1) for (a) Hayden weather station in Colorado,
(b) Boulder weather station; (c) Budd weather station in Wyoming.

Figure 4 indicates that the Yang correction adjustment needed on the precipitation recorded at the
stations is about 0.1 mm/day. However, on windy days, the Venturi effect and evaporation were larger.
On those days, the difference was greater than 0.8 mm/day, particularly at Budd station in Wyoming,
which is located at a high elevation (2117 m asl).

3.3. Spatial Precipitation Bias Analysis

Figure 5 presents the performance of several aspects of each dataset (ρ, RMSE, and SD) using the
Taylor diagram after the Yang correction. The Taylor diagram is a graph facilitating the comparative
assessment of three statistical indices (Pearson correlation coefficient, root-mean-squared error, and the
standard deviation) calculated between observed records and modeled values for a specific variable or
parameter. The Taylor diagram can summarize the accuracy of all three datasets versus observations
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using the aforementioned indices simultaneously (Ghajarnia et al. [38]). This figure illustrates the
results of the Taylor diagram at different time scales (daily, weekly, monthly).

(a) Hayden Daily (b) Hayden Weekly (c) Hayden Monthly

(d) Boulder Daily (e) Boulder Weekly (f) Boulder Monthly

(g) Budd Daily (h) Budd Weekly (i) Budd Monthly

Figure 5. (a)–(i): Taylor diagram for three spatial precipitation product versus gauge records during
the growing season at different time scales for all three years, with STD and RMSE in mm/time units
(mm/day, mm/week, mm/month) per column, respectively.

In terms of the effect of temporal resolution (daily, weekly, monthly), the monthly scale showed
a stronger correlation between precipitation products and gauge records in terms of ρ than the
weekly or daily scale. This might originate from the impact of aggregation on outliers. In upscaling,
errors at higher resolution scales (in terms of both temporal and spatial resolution) will be indemnified,
to some extent (Ren et al., 2018 [39], and Zhang et al., 2018 [40]). For example, the correlation of ρ

between TRMM and the gauge for all three stations at the daily scale was about 0.5, while at the monthly
scale, it increased to 0.90. This pattern held for PRISM and Daymet, with the correlation of PRISM vs.
gauge and Daymet vs. gauge increasing from 0.4–0.95 and 0.7–0.97, respectively. The RMSE of TRMM
was ∼3 mm/day, 7–9 mm/week, and 10–15 mm/month; and the RMSE of both PRISM and Daymet
was ∼2.5 mm/day, 3–7 mm/week, and 4–15 mm/month. Furthermore, Daymet outperformed PRISM
at all daily, weekly, and monthly scales, and PRISM performed better than TRMM at the monthly scale.
In general, the accuracy of Daymet and PRISM were similar, and decreasing the temporal resolution
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led to an improved relationship between the estimation records (TRMM, Daymet, and PRISM) and
observations (gauge).

The NSE and SAE reported in Table 3 and the scatter plots shown in Figure 6 are useful for
assessing the performance of the spatial precipitation versus the gauge records. According to Table 3,
the performance of all datasets versus the observations was acceptable in terms of NSE, except for the
estimation records at the daily scale and estimation of TRMM at both daily and weekly scales. In terms
of SAE, the performances of TRMM and Daymet at the daily scale were similar (between 400 and
500 mm/day). However, when the temporal resolution decreased, the performances of Daymet and
PRISM were similar. To summarize, Daymet and PRISM, as provided online, can be considered
adequate only at weekly and monthly scales, and the TRMM dataset could not be considered
an accurate source at either the daily or weekly scale. In other words, Table 3 reveals that, even though
NSE is close to 1.0 for most of the situations at weekly and monthly scales, there is a considerable
disagreement with gauge records (i.e., more than 100 mm during the growing season), which could
have a significant impact on farmers’ decisions for irrigation management.

Figure 6 illustrates the impact of different time scales on the spatial precipitation. In general,
the correlation of Daymet with the gauge records was stronger than PRISM, and the correlation of
PRISM with the gauge was stronger than TRMM, which agrees with the Taylor diagram results.
Decreasing the temporal resolution also decreased the uncertainties between the spatial precipitation
datasets versus the observations. Moving from daily to monthly scale, the difference in terms of trend
lines between Daymet, PRISM, and TRMM-3B42 was insignificant, and those lines were similar to
one another.

(a) Hayden Daily (b) Hayden Weekly (c) Hayden Monthly

(d) Boulder Daily (e) Boulder Weekly (f) Boulder Monthly

Figure 6. Cont.
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(g) Budd Daily (h) Budd Weekly (i) Budd Monthly

Figure 6. Scatter plots of three spatial precipitation product versus gauge records during the growing
season at different time scales (daily, weekly, and monthly) for all three seasons (2014–2016).

Table 3. NSE and SAE for three spatial precipitation products versus gauge records during the growing
season at the different time scales for all three years.

Station Datasets Nash Coeff SAE (mm)

Daily Weekly Monthly Daily Weekly Monthly

Daymet 0.42 0.70 0.80 411 219 125
Hayden PRISM 0.01 0.77 0.85 606 192 102

TRMM −0.02 0.27 0.87 571 346 95

Daymet 0.21 0.80 0.86 408 179 86
Boulder PRISM −0.43 0.80 0.92 549 145 33

TRMM −0.39 0.23 0.48 624 346 181

Daymet 0.57 0.70 0.76 408 288 160
Budd PRISM −0.1 0.66 0.80 749 307 181

TRMM 0.11 0.46 0.76 609 394 183

3.4. Weather Station Coverage Area for Rainfall

Despite latency, spatial resolution, and the disagreement of spatial precipitation products with
gauge stations, these datasets, particularly Daymet, can be used to for estimation of weather station
coverage area maps, assuming that the disagreement between the spatial precipitation dataset and
the gauge station is removed. For this study, the disagreement (or bias) was removed in the Daymet
dataset at a daily scale, assuming the disagreement was constant for the day across the areas of study.
The estimation can be based on a comparison of indices such as ρ, RMSE, and NSE from the gauge
time series and the time series of each Daymet pixel. However, from the perspective of irrigators and
farmers, this map should clearly indicate the risk of inaccurate data due to the distance of the gauge
location, with meaningful units, when they use station records for irrigation management. For xample,
if they use the gauge records, they need to know the seasonal difference in precipitation for their farms
during the growing season. Therefore, SAE is more adequate as a fundamental statistic (baseline)
for producing the coverage area of the weather station. In addition, the pattern of the coverage area
maps would be expected to be correlated to the seasonal dominant wind direction. To evaluate this
assumption, the wind rose graphs of the gauge were plotted by “WRPLOT VIEW” [41] software and
are shown in Figures 7–9 for the three gauge stations included in this study.
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Figure 7. Coverage area along with the wind rose graph for Hayden Station.
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Figure 8. Coverage area along with the wind rose graph for Budd Station.
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Figure 9. Coverage area along with the wind rose graph for Boulder Station.

Figures 7–9 provide a visual approximation of the weather station coverage areas in terms of
rainfall for the growing season each year (2014, 2015, 2016) along with the wind rose graphs. The wind
rose graphs were plotted using wind direction and wind speed for the growing season. To follow
the SAE on a spatial scale, the pasture/hay, grassland/herbaceous, and cultivated crop areas were
extracted from NLCD 2011 [22] and mapped over these figures (pale color). These figures show that
the gauge coverage area was affected by the selected SAE threshold and was not a fixed radius or
area; it had a different area and shape in every season. The thresholds proposed in Figures 7–9 were
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based on what an irrigator or farmer in the U.S. might choose. For example, an irrigator dependent on
rainfall as an irrigation water source, or using a pressurized irrigation system, or with reduced access
to water shares would prefer a small SAE (less than 0.25 ft or 75 mm) in the season, which would
reduce the area of influence of the gauge station to near proximity (or require installing a weather
station close to farms). Furthermore, considering the SAE threshold of 150 mm for Hayden in Colorado
and Budd in Wyoming indicates that the weather station coverage area was influenced by wind
direction and that the area changed depending on the year. The Boulder station in Wyoming was
also influenced by wind direction, but the coverage area seemed constant in the three years evaluated.
Therefore, elevation and topographic configuration will play an important role in determining gauge
area of coverage. In terms of SAE, 150 mm (1/2 ft) could be a reasonable risk threshold for farmers
beyond which the weather station records cannot be considered reliable. With this threshold, there
may not be a need for additional stations for Wyoming (when combining Figures 8 and 9). In addition,
for each pixel, these maps can show which weather station should have the higher priority to be used.
In contrast, the single Colorado station was not enough to cover that study area. As shown in Figure 7,
the performance of the station could be adequate for the farm units located in the western part of the
study area, but not in the eastern and northeastern parts. Another important aspect of these figures
is the relationship between the dominant wind direction and the elongation of the weather station
coverage areas. This relationship is more pronounced for the Colorado and Budd stations. In Colorado,
the dominant wind was blowing from east to west and in Budd was blowing from north to south.
For both stations, the elongation of the influence area was compatible with wind direction patterns.

3.5. Spatial Effective Rainfall Estimates

The evaluation of the Daymet dataset in this study revealed that its performance was acceptable at
the monthly scale. Thus, if monthly ET maps are available, the methodology proposed by USDA-SCS
can be used to estimate effective rainfall, which would be more desirable for irrigators and farmers.
Since ET maps from METRIC, using Landsat imagery at 30-m resolution, are available for the areas of
study, the effective rainfall estimates can be achieved using ET (at 30-m resolution) and a resampled
version of Daymet (from 1 km–30 m). To resample Daymet, a simple resampling tool in the ArcGIS
resampling toolbox was used with a “nearest” method. Thus, the resolution of the effective rainfall
in Figure 10 was 30 m. Since the differences between the rainfall and effective rainfall were related
to runoff and deep percolation, the Ratio of Effective precipitation over precipitation (REP) showed
how much of the seasonal rainfall was stored in the root zone to be used by the crops. Therefore,
the information from the REP maps can provide essential information for irrigators and farmers
in terms of decisions about supplemental irrigation. Figure 10 shows the precipitation, effective
precipitation, and REP of both the Colorado and Wyoming regions for the 2016 growing season.

As illustrated in the left column in Figure 10, the amount of precipitation extracted from Daymet
for the 2016 growing season in the Colorado region ranged from 146 mm–412 mm (Figure 10a).
However, some part of this precipitation will be stored in the soil as effective precipitation, ranging
from 77 mm–321 mm (Figure 10c). Although the pattern of precipitation and effective precipitation
was quite similar, the REP was not a constant value for the entire study area. According to Figure 10e,
REP for agricultural units in 2016 was about 65%, which means that up to 65% of the seasonal
precipitation successfully infiltrated the root zone and 35% was lost through deep percolation and
run-off. Since the USDA-SCS approach was developed only for agricultural fields, the REP values for
non-agricultural units cannot be considered accurate. As in the Colorado region, the spatial pattern of
precipitation and effective precipitation in the Wyoming region were similar to one another, and the
amounts of precipitation and effective precipitation were 137 mm–277 mm and 71 mm–247 mm,
respectively. Again, in the Wyoming region, almost 65% of the seasonal precipitation can be considered
as effective rainfall.

While this study presents the effective rainfall analysis at seasonal scale, two major factors
influence its accuracy and stability: (a) Daymet accuracy at the monthly scale was assumed to be
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adequate, and evaluation and correction of Daymet data requires additional (nonexistent) gauge
stations, which is beyond the scope and objective of this study; and (b) given that rainfall is stochastic
in nature, within a growing season, some months can be wetter or drier than the historical monthly
pattern, and the accuracy and stability are influenced by the season (wetter years). Thus, a more
detailed analysis of monthly effective precipitation using USDA-SCS implies the disaggregation of the
analysis done in this study at the monthly scale and spatial estimation the multiplication factor based
on soil type and crop root size.

Figure 10. The left column (a,c,e) shows (a) the precipitation map, (c) the USDA-SCS effective
precipitation map, and (e) the ratio of effective precipitation over the precipitation map of Colorado
for the 2016 growing season; the right column shows (b) the precipitation map, (d) the effective
precipitation map, and (f) the ratio of effective precipitation over the precipitation map of Wyoming for
the 2016 growing season. Note that USDA-SCS was developed for only agricultural lands; other areas
are presented for visualization purposes.

4. Summary and Conclusions

Rainfall plays an important role in water resources management; thus, its adequate quantification
helps water managers, irrigators, and farmers to have a significant impact on water efficiency. In this
study, precipitation data (as gauge or spatial datasets) were evaluated on their adequacy for use as
sources of information for agricultural water management at the farm scale. All evaluated spatial
precipitation products (TRMM-3B42, PRISM and Daymet) had disagreement with gauge station
data. Spatial and temporal resolution, along with data latency, were other limitations for field- and
farm-level analysis. Thus, observed rainfall records obtained from gauges are the most reliable and
real-time accessible data. However, because of the distance from the gauge, these records may not be
applicable for specific farms. Distance to weather stations, topography, wind direction, wind speed,
and the value and frequency of precipitation can all affect the coverage area of the weather stations.
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Therefore, maps that show the coverage area are essential for farmers and water managers. In this
study, the coverage area of weather stations located in two different regions in the Upper Colorado
River Basin (Colorado and Wyoming regions) for 2014, 2015, and 2016 were estimated using a statistical
approach based on gauge records, remote sensing data, and gridded climate data in terms of rainfall
and effective rainfall. To select the proper precipitation datasets, the records of the gauges were
adjusted and then compared to one another based on the spatial resolution of the farms and their
agreement with observed records using the Taylor diagram. Daymet was selected as the proper dataset;
its bias was corrected, and the coverage area of the stations was determined based on the SAE between
the corrected Daymet and the gauge records. In addition, the shape of the coverage area was compared
to the dominant wind direction using wind rose diagrams. Finally, the USDA-SCS method was used
to generate the effective rainfall on a spatial scale utilizing available monthly ET maps derived from
the METRIC model and monthly precipitation from Daymet.

The results revealed that decreasing the temporal resolution or intervals (daily to monthly)
and increasing the spatial resolution (TRMM to Daymet) increases the agreement of the spatial
datasets (estimations) to the gauge (observations). Furthermore, PRISM and Daymet were similar in
performance and were better than TRMM. However, all three datasets showed significant bias from
observations on a daily and weekly scale in terms of SAE, despite their acceptable performance in terms
of NSE. Results showed that, although the pattern of the coverage area for each of the stations was
nearly consistent during the study years (2014–2016), the extent of that areas was not constant. In terms
of coverage area based on rainfall, the dominant wind direction could be related to the elongated shape
of the coverage area. However, no definitive pattern emerged between the wind factor and the extent of
the area of influence. Regarding the risk level thresholds for disagreement in rainfall values, the gauges
in Wyoming were shown to cover significant portions of the study area, but data users should pay
attention to the coverage extent of each station. In contrast, the gauge located in the Colorado region
covers only the western area around its location. Therefore, the records from this station cannot provide
a reliable estimation for the eastern side of the gauge in this study area. The technique used in this study
has the potential to be used in determining optimal or near-optimal additional gauge locations while
maximizing the coverage area as an objective function. Future work could evaluate factors that affect
the fluctuation of the coverage area. Since Daymet had acceptable agreement with the gauge records
at the monthly scale and had a higher spatial resolution, it can be consider as a useful spatial rainfall
source to produce spatial maps of loss (run-off and deep percolation) using effective rainfall methods
(direct measurements, water balance models, statistical models). Providing the effective rainfall maps
at this temporal and spatial scale not only is important for water resources managers, but is useful for
irrigators. However, one-year latency in Daymet data availability is a challenge for a real-time field
irrigation scheduling. The analysis of effective precipitation using the USDA-SCS approach revealed
that in most agricultural areas, up to 65% of the seasonal precipitation can be stored in the soil to be
used by the crops, and about 35% will be lost through run-off and deep percolation processes.
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Abbreviations

The following abbreviations are used in this manuscript:

SGM Satellite-Gauge-Model
GPCC Global Precipitation Climatology Center
1DD One-Degree Daily
GPCP Global Precipitation Climatology Project
TRMM Tropical Rainfall Measuring Mission
CONUS Contiguous United States
GHCN-D Global Historical Climatology Network-Daily
PRISM Parameter-Elevation Regression on Independent Slopes Model
PERSIANN Precipitation Estimation from Remotely-Sensed Information using Artificial Neural Networks
ANN Artificial Neural Network
IDW Inverse Square Distance Weighting
KED Kriging with the External Drift
ET Evapotranspiration
TMI TRMM microwave imager
SSM/I Special Sensor Microwave Imager
AMSU Advanced Microwave Sounding Unit
AMSR-E Advanced Microwave Sounding Radiometer-Earth Observing System
PM Passive Microwave
TIR Thermal Infrared
NLCD National Land Cover Database
SAE Summation of Absolute Error
RMSE Root-Mean-Squared Error
SD Standard Deviation
NSE Nash–Sutcliffe model Efficiency
USDA U.S. Department of Agriculture
SCS Soil Conservation Service
MRLC Multi-Resolution Land Characteristics
CMAP The Climate Prediction Center Merged Analysis of Precipitation
REP The Ratio of Effective precipitation over Precipitation
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